Report 39-8910/3 Page 9 of 16



-l -malucie

| Fuel type                                                                                 | Wood                 |               |              |             |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------|---------------|--------------|-------------|--|--|--|--|--|
| Analytical indicator                                                                      | Symbol               | Unit          | Value        | Uncertainty |  |  |  |  |  |
| Heat of combustion                                                                        | Q <sub>s</sub>       | [MJ/kg]       | 16.46        | 0.14        |  |  |  |  |  |
| Caloric value                                                                             | $Q_{j}$              | [MJ/kg]       | 14.75        | 0.14        |  |  |  |  |  |
| All water in original condition                                                           | W <sup>r</sup> t     | [% by weight] | 17.35 ± 0.01 |             |  |  |  |  |  |
| Ash                                                                                       | А                    | [% by weight] | 1.14 ± 0.02  |             |  |  |  |  |  |
| Carbon                                                                                    | С                    | [% by weight] | 40.93        | 0.25        |  |  |  |  |  |
| Hydrogen                                                                                  | Н                    | [% by weight] | 5.88         | 0.10        |  |  |  |  |  |
| Nitrogen                                                                                  | N                    | [% by weight] | 0.20         | 0.10        |  |  |  |  |  |
| Sulphur                                                                                   | S                    | [% by weight] | 0.044        |             |  |  |  |  |  |
| Chlorine                                                                                  | Cl                   | [% by weight] | 0.022        |             |  |  |  |  |  |
| Oxygen – calculation for 100%                                                             | 0                    | [% by weight] | 34.44        |             |  |  |  |  |  |
| CO <sub>2</sub> max.                                                                      | CO <sub>2 max.</sub> | [% by volume] | 19.12        |             |  |  |  |  |  |
| Conversion factor f <sub>emis</sub> for the conversion of emissions in [mg/m³] to [mg/MJ] | f <sub>emis</sub>    | [-]           | 0.26843      |             |  |  |  |  |  |
| Min. required volume of O <sub>2</sub>                                                    | V <sub>O2 min</sub>  | [m³/kg]       | 0.845        |             |  |  |  |  |  |
| Min. required dry air volume                                                              | V <sub>vz min</sub>  | [m³/kg]       | 4.025        |             |  |  |  |  |  |
| Min. quantity of dry chimney gas                                                          | V <sub>ks min</sub>  | [m³/kg]       | 3.934        |             |  |  |  |  |  |

Note: Sample in the original condition

#### specified in the table of measurement results Measurement uncertainty:

The above-specified extended measurement uncertainties are calculated as a factor of the measurement uncertainty and the extension coefficient, k=2, corresponding to the coverage certainty of 95% as regards standard classification. The uncertainties do not reflect the impact of sample taking and lack of homogeneity. The standard uncertainty was determined in accordance with Document EA 4/02."

> The heat capacity measured is within the tolerance of  $\pm 8\%$ ; Boiler class 3;

The temperature of combustion products is lower than 160°C above the ambient temperature, see the respective data in the technical documentation:

The measured draught values do not exceed the maximum values according to figure 2;

The period of burning is more than 2 hours during wood burning;

The minimum heating capacity equals the rated heating capacity - see the follow-up data in the technical documentation.

Tested by:

Test evaluation:

Milan Holomek

Date:

2010-12-10

Signed: /

Reviewed by: Ing. Stanislav Buchta

Date:

Report 39-8910/3 Page 10 of 16



| Accredited test number: | 1004.1                            | 1004.1 Test title: Test of heat capacity, input and efficiency Deviation of type A.1.1 |                     |        |                   |        |        |  |  |  |
|-------------------------|-----------------------------------|----------------------------------------------------------------------------------------|---------------------|--------|-------------------|--------|--------|--|--|--|
| Testing method:         |                                   |                                                                                        | ČSN EN 303          | 5:20   | 00, Art. 5.7, 5.8 | and 5  | 5.10   |  |  |  |
| Sample tested:          |                                   |                                                                                        | ORLIGNO 20          | 0 60   | kW                |        |        |  |  |  |
| Measuring equipn        | nent used:                        |                                                                                        | See report 39       | -881   | 1/3               |        |        |  |  |  |
| Date of test and a      | mbient cond                       | litions - s                                                                            | ee the "Heat cap    | acity, | input and effic   | iency' | " test |  |  |  |
| Place of testing:       | at the<br>Engineer<br>Test Instit | ing x                                                                                  | at the manufacturer |        | at the customer   |        | other: |  |  |  |
| 5/4/4<br>5/4/4<br>5/4/4 |                                   |                                                                                        |                     |        |                   |        |        |  |  |  |

#### Test results:

| Requirement                                                                                                                                                                                                                                                                                                                                                                                                   | Specification of requirement          | Test evaluation | Note |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|------|
| Type A deviations                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                 |      |
| A.1 Deviation for Austria                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                 |      |
| Boiler efficiency for rated heat capacity and minimum heat capacity: a) Manual fuel supply $ \leq 10 \text{ kW} \qquad 73 \% \\ > 10 \text{ kW} \leq 200 \text{ kW} \qquad (65.3 + 7.7 \log Q_N) \% \\ > 200 \text{ kW} \qquad 83 \% \\ b) Automatic fuel supply \\ \leq 10 \text{ kW} \qquad 76 \% \\ > 10 \text{ kW} \leq 200 \text{ kW} \qquad (68.3 + 7.7 \log Q_N) \% \\ > 200 \text{ kW} \qquad 86 \% $ | ČSN EN 303-5<br>Annex A<br>Art. A 1.1 | , , ,;<br>+     |      |

Measurement results: 1. boiler: ORLIGNO 200 60 kW, rated output, fuel: wood

| Boiler capacity            | Calorific efficiency required | Calorific efficiency measured |
|----------------------------|-------------------------------|-------------------------------|
| Rated – 1st burning period | 79.0                          | 89.2                          |
| Rated - 2nd burning period | 79.0                          | 88.6                          |

**Test evaluation:** 

The measured efficiency is higher than the required minimum.

Tested by:

Milan Holomek

Date:

2010-12-10

Signed:

Reviewed by: Ing. Stanislav Buchta

Date:

2010-12-10

Report 39-8910/3 Page 11 of 16



| number:            |                                           |                    |                        |        |                 |        |        |  |
|--------------------|-------------------------------------------|--------------------|------------------------|--------|-----------------|--------|--------|--|
| Testing method:    | ČSN EN 303-5:2000, Art. 5.7, 5.9 and 5.10 |                    |                        |        |                 |        |        |  |
| Sample tested:     | ORLIGNO 20                                | ORLIGNO 200 60 kW  |                        |        |                 |        |        |  |
| Measuring equipn   | See report 39                             | <del>)</del> -8811 | 1/3                    |        |                 |        |        |  |
| Date of test and a | mbient condition                          | s - s              | ee the "Heat cap       | acity, | input and effic | iency" | ' test |  |
| Place of testing:  | at the<br>Engineering<br>Test Institute   | х                  | at the<br>manufacturer |        | at the customer |        | other: |  |

1005.1 Test title: Combustion efficiency test - emissions

#### Test results:

Accredited test

| Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Specification of requirement | Test evaluation | Note    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|---------|
| Limit values of emissions  The emission values must be low during burning. This requirement is considered fulfilled if the emission values specified in table 7 are not exceeded, provided that the boiler is operated under rated heat capacity, or as regards boilers with a range of heat capacity operated under the rated heat capacity and the minimum heat capacity in accordance with 5.7, 5.9 and 5.10. The requirement regarding the limit values of dust emissions under the minimum heat capacity is fulfilled if the requirements concerned are fulfilled under the rated heat capacity. | ČSN EN 303-5<br>Art. 4.2.6   | : <b>+</b> ·    | Class 3 |

Measurement results: 1. boiler: ORLIGNO 200 60 kW, rated output, fuel: wood

Average values of gas emissions of O<sub>2</sub>, CO<sub>2</sub>, CO, OGC, NO<sub>3</sub> and dust:

| Average val    | O <sub>2</sub> [%] | CO2   | СО   | ogc | NO <sub>x</sub> | Dust<br>[mg/m³] | CO<br>[mg/m³] | OGC [mg/m $^3$ ] O <sub>2</sub> = 10% | $NO_{x}$ $[mg/m^{3}]$ $O_{2} = 10 \%$ | Dust $[mg/m^3]$ $O_2 = 10 \%$ |
|----------------|--------------------|-------|------|-----|-----------------|-----------------|---------------|---------------------------------------|---------------------------------------|-------------------------------|
| Average values | 6.01               | 13.57 | 1056 | 141 | 119             | 48              | 969           | 56                                    | 179                                   | 35                            |

Measured and calculated values concerning the dust measurements:

| weasured and calculated values concerning the o |                                    |                                    |                                    |                                    |  |  |  |
|-------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|--|--|
| Concentration of solid po                       | ollutants at the l                 | boiler output                      |                                    |                                    |  |  |  |
| Measurement number                              | - 1                                | 2                                  | 3                                  | 4                                  |  |  |  |
| beginning – end of measurement (hour, min.)     | 11 <sup>46</sup> -12 <sup>16</sup> | 12 <sup>36</sup> -13 <sup>06</sup> | 13 <sup>46</sup> -14 <sup>16</sup> | 14 <sup>36</sup> -15 <sup>06</sup> |  |  |  |
| ambient temperature (°C)                        | 27,3                               | 27,8                               | 28,2                               | 28,3                               |  |  |  |
| number of measuring points ()                   | 1                                  | 1                                  | 1                                  | 1                                  |  |  |  |
| duration of consumption at the measuring point  | 30                                 | 30                                 | 30                                 | 30                                 |  |  |  |
| flu gas temperature (°C)                        | 136,7                              | 144,8                              | 141,0                              | 149,4                              |  |  |  |
| negative (positive) pressure in the measurement | -27                                | -27                                | -28                                | -28                                |  |  |  |
| atmospheric air pressure (Pa)                   | 99 885                             |                                    |                                    |                                    |  |  |  |
| measurement cross-section (m²) 0,00785          |                                    |                                    |                                    |                                    |  |  |  |

Report 39-8910/3 Page 12 of 16



| fictitious humidity under standard conditions (kg/m³)                                                               |       | 0,13  | 331   |       |  |  |
|---------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|--|--|
| dew point temperature (°C)                                                                                          | 52,9  |       |       |       |  |  |
| relative flu gas humidity (%)                                                                                       | 14,8  |       |       |       |  |  |
| numid flu gas density under stand. conditions (kg/m³)                                                               |       | ·     |       |       |  |  |
| operating content of O <sub>2</sub> (%)                                                                             |       | 6,    | 0     |       |  |  |
| flue gas volume flow rate (m³/h)                                                                                    |       | 15    | 1,8   |       |  |  |
| flu gas vol. flow rate under stand. conditions (m³/h)                                                               |       | 98    | 3,7   |       |  |  |
| dry flu gas volume flow rate under standard conditions (m <sup>3</sup> /h)                                          | 84,1  |       |       |       |  |  |
| medium exhaust rate (m/s)                                                                                           | 5,4   | 5,4   | 5,4   | 5,4   |  |  |
| weight of solid pollutants (mg)                                                                                     | 15,8  | 14,7  | 15,6  | 14,8  |  |  |
| flu gas sample volume (m³)                                                                                          | 0,574 | 0,571 | 0,570 | 0,572 |  |  |
| flu gas sample volume under stand. conditions (m³)                                                                  | 0,377 | 0,368 | 0,370 | 0,364 |  |  |
| dry flu gas sample volume under standard conditions (m³)                                                            | 0,321 | 0,314 | 0,315 | 0,310 |  |  |
| medium weight concentration of solid pollutants (mg/m³)                                                             | 27,5  | 25,7  | 27,4  | 25,9  |  |  |
| medium weight concentration of solid pollutants under standard conditions (mg/m³)                                   | 41,9  | 39,9  | 42,2  | 40,7  |  |  |
| medium weight concentration of solid pollutants in dry flu gas under standard conditions (mg/m³)                    | 49,2  | 46,8  | 49,5  | 47,7  |  |  |
| mass flow rate of solid pollutants (g/h)                                                                            | 4,17  | 3,90  | 4,16  | 3,93  |  |  |
| average medium weight concentration of solid pollutants (mg/m³)                                                     |       | 26    | 5,6   |       |  |  |
| average medium weight concentration of solid pollutants under standard conditions (mg/m³)                           |       | 4     | 1,2   |       |  |  |
| average medium weight concentration of solid pollutants in dry flu gas under standard conditions                    |       | 41    | 8,3   |       |  |  |
| avg. medium weight concentration of solid pollutants in dry flu gas under standard conditions at 10% O <sub>2</sub> |       | 3     | 5,4   |       |  |  |
| average mass flow rate of solid pollutants (g/h)                                                                    |       | 4     | ,00   |       |  |  |
| standard deviation for determination of medium weight concentration of solid pollutants (mg/m³)                     |       | 0     | ,96   |       |  |  |
| standard deviation for determination of average mass flow rate of solid pollutants (g/h)                            |       | 0     | ,14   |       |  |  |

Note: standard conditions - temperature: 0 °C, pressure: 101.325 kPa

**Test evaluation:** 

Emissions - Category 3.

Tested by:

Milan Holomek

Date:

2010-12-10

Reviewed by: Ing. Stanislav Buchta

Date:

2010-12-10

Signed:

Report 39-8910/3 Page 13 of 16



| Accredited test number: | 1005.1                               | Deviation of type A.1.2 |                     |                   |                    |        |        |  |  |  |
|-------------------------|--------------------------------------|-------------------------|---------------------|-------------------|--------------------|--------|--------|--|--|--|
| Testing method:         |                                      |                         | ČSN EN 303          | -5:200            | 00, Art. 5.7, 5.9  | and 8  | 5.10   |  |  |  |
| Sample tested:          |                                      |                         | ORLIGNO 20          | ORLIGNO 200 60 kW |                    |        |        |  |  |  |
| Measuring equipn        | nent used:                           |                         | See report 39       | 9-8811            | /3                 |        |        |  |  |  |
| Date of test and a      | mbient condit                        | ions - se               | e the "Heat cap     | acity,            | input and effic    | iency' | ' test |  |  |  |
| Place of testing:       | at the<br>Engineerin<br>Test Institu |                         | at the manufacturer |                   | at the<br>customer |        | other: |  |  |  |

| Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                   | Specification of requirement | Test<br>evaluation | Note     |              |   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|------------------------------|--------------------|----------|--------------|---|------|
| A.1 deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for Austria                                                                  |                   |                              |                    |          |              |   |      |
| Limit values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of emissions                                                                 |                   |                              |                    |          |              |   |      |
| Name of the state | mg/MJ <sup>1)</sup>                                                          | СО                | NO <sub>x</sub>              | OGC                | Dust     |              |   |      |
| Manual fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ual fuel Biological fuels                                                    | 1100              | 150 <sup>2)</sup>            | 80                 | 60       |              |   |      |
| charging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fossil fuels                                                                 | 1100              | 100                          | 80                 | 60       | ČSN EN 303-5 |   |      |
| Automatic fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Biological fuels                                                             | 500 <sup>3)</sup> | 150 <sup>2)</sup>            | 40                 | 60       | Annex A      | + |      |
| supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fossil fuels                                                                 | 500               | 100                          | 40                 | 40       | Art. A 1.2   |   | 1.00 |
| <sup>2)</sup> Limit values o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o the caloric value of NO <sub>x</sub> apply for boin<br>rated heat capacity | lers burn         | ing wood                     |                    | eeded by |              | · |      |

Measurement results: 1. boiler: ORLIGNO 200 60 kW, rated output, fuel: wood

|          |                        |             | Ave                      | erage emi    | ssion valu      | ıes           |                            |                |                 |  |  |  |
|----------|------------------------|-------------|--------------------------|--------------|-----------------|---------------|----------------------------|----------------|-----------------|--|--|--|
| Boiler   | Boiler Measured values |             |                          |              |                 |               | Converted values           |                |                 |  |  |  |
| capacity | O <sub>2</sub> [%]     | CO<br>[ppm] | NO <sub>x</sub><br>[ppm] | OGC<br>[ppm] | Dust<br>[mg/m³] | CO<br>[mg/MJ] | NO <sub>X</sub><br>[mg/MJ] | OGC<br>[mg/MJ] | Dust<br>[mg/MJ] |  |  |  |
| Rated    | 6.01                   | 1056        | 119                      | 141          | 48              | 494           | 91                         | 28             | 18              |  |  |  |

Test evaluation:

The measured emission values do not exceed the limit values.

Tested by:

Milan Holomek

Date: 2010-12-10 Signed:

Reviewed by: Ing. Stanislav Buchta

Date:

2010-12-10

Report 39-8910/3 Page 14 of 16



| Accredited test number: | 1005.1 Te                               | Test title: Combustion efficiency test - emissions  Deviation of type A.2 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |        |  |  |  |
|-------------------------|-----------------------------------------|---------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|--------|--|--|--|
| Testing method:         |                                         |                                                                           | 5:200                  | 0, Art. 5.7, 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and 5              | 5.10   |        |  |  |  |
| Sample tested:          |                                         |                                                                           | ORLIGNO 20             | 0 60 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>W</b>           |        |        |  |  |  |
| Measuring equipm        | nent used:                              |                                                                           | See report 39          | -8811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /3                 |        |        |  |  |  |
| Date of test and a      | mbient conditio                         | ns - se                                                                   | e the "Heat cap        | acity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | input and effic    | iency' | ' test |  |  |  |
| Place of testing:       | at the<br>Engineering<br>Test Institute | x                                                                         | at the<br>manufacturer | The state of the s | at the<br>customer |        | other: |  |  |  |
| Test results:           |                                         | -                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |        |  |  |  |
|                         |                                         |                                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Constituent        |        | Toot   |  |  |  |

| Requirement                                                                                                                                                          |                                                                                                                                                             | Specification of requirement   | Test<br>evaluation | Note     |     |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|----------|-----|--------|
| A.2 Deviation fo                                                                                                                                                     | or Germany                                                                                                                                                  |                                |                    | ,        |     |        |
| acceptable. Central heating l capacity excee operated so t requirements, de                                                                                          | nly category 3 in accordance boilers burning solid fuels winding 15 kW must be of that the emissions meet epending on the fuel used: Emission values [g/m³] | th the rate                    | ed heat<br>ed and  |          |     | e jeto |
| Black and brown                                                                                                                                                      | reference content of O <sub>2</sub> = 8%                                                                                                                    | -                              | 0.15               | Annex A  | . + |        |
| Wood in natural condition                                                                                                                                            | Reference content of O <sub>2</sub> = 13%                                                                                                                   | 4 1)<br>2 2)<br>1 3)<br>0.5 4) | 0.15               | Art. A.2 |     |        |
| $\begin{array}{l} \text{1) 15 kW} & < O_N \le 50 \\ \text{2) 50 kW} & < O_N \le 15 \\ \text{3) 150 kW} & < O_N \le 5 \\ \text{4) } O_N > 500 \text{ kW} \end{array}$ | 0 kW                                                                                                                                                        |                                |                    |          | ·   | ,      |

Measurement results: 1. boiler: ORLIGNO 200 60 kW, rated output, fuel: wood

| Boiler<br>capacity |                    | Average emission values |              |    |                             |                                        |                                         |                                                   |                                                     |  |  |  |
|--------------------|--------------------|-------------------------|--------------|----|-----------------------------|----------------------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------------------------------|--|--|--|
|                    |                    | Measur                  | ed value     | es | Converted values            |                                        |                                         |                                                   |                                                     |  |  |  |
|                    | O <sub>2</sub> [%] | CO<br>[ppm]             | OGC<br>[ppm] |    | CO $O_2 = 10 \%$ $[mg/m^3]$ | OGC $O_2 = 10 \%$ [mg/m <sup>3</sup> ] | Dust $O_2 = 10 \%$ [mg/m <sup>3</sup> ] | CO<br>O <sub>2</sub> = 13%<br>[g/m <sup>3</sup> ] | Dust<br>O <sub>2</sub> = 13%<br>[g/m <sup>3</sup> ] |  |  |  |
| Rated              | 6.01               | 1056                    | 141          | 48 | 969                         | 56                                     | 35                                      | 0.705                                             | 0.026                                               |  |  |  |

Test evaluation:

The measured emission values do not exceed the limit values.

Tested by: Milan Holomek Date: 2010-12-10 Signed:

Reviewed by: Ing. Stanislav Buchta

Date:

2010-12-10

Report 39-8910/3 Page 15 of 16



| Accredited test number: | 1005.1 To                               | est title:                                    |                                           | Combustion efficiency test - emissions Deviation of type A.5 |                 |        |        |  |  |  |
|-------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------|--------------------------------------------------------------|-----------------|--------|--------|--|--|--|
| Testing method:         |                                         |                                               | ČSN EN 303-5:2000, Art. 5.7, 5.9 and 5.10 |                                                              |                 |        |        |  |  |  |
| Sample tested:          |                                         |                                               | ORLIGNO 20                                | 00 60                                                        | kW              |        |        |  |  |  |
| Measuring equipm        | nent used:                              |                                               | See report 39-8811/3                      |                                                              |                 |        |        |  |  |  |
| Date of test and a      | mbient conditi                          | ons - se                                      | e the "Heat car                           | acity,                                                       | input and effic | iency' | test   |  |  |  |
| Place of testing:       | at the<br>Engineering<br>Test Institute |                                               | at the<br>manufacturer                    |                                                              | at the customer |        | other: |  |  |  |
| Test results:           |                                         | <u>, , , , , , , , , , , , , , , , , , , </u> |                                           |                                                              |                 |        |        |  |  |  |

| Requiremen                    | t                                                                         |                                                | Specification of requirement | Test evaluation   | Note                |              |  |
|-------------------------------|---------------------------------------------------------------------------|------------------------------------------------|------------------------------|-------------------|---------------------|--------------|--|
| A.5 Deviatio                  | n for Switzerlar                                                          | nd                                             |                              |                   |                     |              |  |
| of Table 7 is<br>The use of o | urning wood in r<br>acceptable.<br>coal, coal brique<br>Ilphur > 1% is no | ettes and coke                                 |                              |                   |                     |              |  |
| Fuel                          | Q <sub>N</sub> [kW]                                                       | Emissions<br>[mg/m <sup>#</sup> ]              | ÇO                           | Dust              | ČSN EN 303-5        | +            |  |
| Fossil                        | O <sub>N</sub> ≤ 70<br>70 < O <sub>N</sub> ≤ 1000                         | reference<br>content of O <sub>2</sub> =<br>7% | 4000<br>1000                 | -<br>150          | Annex A<br>Art. A.5 | <del>1</del> |  |
| Wood in natural condition     | $O_N \le 70$ $70 < O_N \le 200$ $200 < O_N \le 500$ $500 < O_N \le 1000$  | Reference content of O <sub>2</sub> = 13%      | 4000<br>2000<br>1000<br>500  | 150<br>150<br>150 |                     | ,            |  |

Measurement results: 1. boiler: ORLIGNO 200 60 kW, rated output, fuel: wood

|                 | Average emission values |             |              |    |                                       |                              |                                         |                             |                              |  |  |  |
|-----------------|-------------------------|-------------|--------------|----|---------------------------------------|------------------------------|-----------------------------------------|-----------------------------|------------------------------|--|--|--|
| Boiler capacity |                         | Measur      | ed value     | es | Converted values                      |                              |                                         |                             |                              |  |  |  |
|                 | O <sub>2</sub> [%]      | CO<br>[ppm] | OGC<br>[ppm] |    | CO $O_2 = 10 \%$ [mg/m <sup>3</sup> ] | OGC $O_2 = 10 \%$ $[mg/m^3]$ | Dust $O_2 = 10 \%$ [mg/m <sup>3</sup> ] | CO $O_2 = 13 \%$ $[mg/m^3]$ | Dust $O_2 = 13\%$ $[mg/m^3]$ |  |  |  |
| Rated           | 6.01                    | 1056        | 141          | 48 | 969                                   | 56                           | 35                                      | 705                         | -                            |  |  |  |

Test evaluation:

The measured emission values do not exceed the limit values.

Tested by:

Milan Holomek

Date:

2010-12-10

Signed:

Reviewed by: Ing. Stanislav Buchta

Date:

2010-12-10

Report 39-8910/3 Page 16 of 16



The test methods in this Report were applied without deviations, additions or exceptions.

#### III. List of referenced documents

- Order B-38376 of 2010-09-01
- Contract B-38376/39 of 2010-09-15
- Contract Supplement No. 1 of 2011-02-02
- ČSN EN 303-5:2000 Central heating boilers Part 5: Central heating boilers burning solid fuels, with manual or automatic fuel supply and nominal heat capacity of up to 300 kW. Terminology, requirements, testing and marking.
- Instruction & Service Manual ORLIGNO 200
- Customer's declaration of 2010-12-27
- Source materials for Task No. 39-8811/3

The persons stated below are accountable for the accuracy of the above-specified data:

Ing. Stanislav Buchta Head of Boiler and Industrial Heat

Equipment Team

Ing. Jiří Dvořák
Head of Heat and Ecological
Equipment Test Station